TARGETING DORMANT BACILLI TO FIGHT TUBERCULOSIS

Main Article Content

Lanfranco Fattorini
Giovanni Piccaro
Alessandro Mustazzolu
Federico Giannoni

Keywords

Tuberculosis, Mycobacterium tuberculois, anti-TB drugs, dormancy.

Abstract

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which kills about 2 million people annually. Furthermore, 2 billion people worldwide are latently infected with this organism, with 10% of them reactivating to active TB due to re-growth of nonreplicating (dormant) Mtb residing in their tissues. Because of the huge reservoir of latent TB it is important to find novel drugs/drug combinations killing dormant bacilli (microaerophiles, anaerobes and drug-tolerant persisters) surviving for decades in a wide spectrum of granulomatous lesions in the lungs of TB patients. Antibiotic treatment of drug-susceptible TB requires administration of isoniazid, rifampin, pyrazinamide, ethambutol for 2 months, followed by isoniazid and rifampin for 4 months. To avoid reactivation of dormant Mtb to active pulmonary TB, up to 9 months of treatment with isoniazid is required. Therefore, a strategy to eliminate dormant bacilli needs to be developed to shorten therapy of active and latent TB and reduce the reservoir of people with latent TB. Finding drugs with high rate of penetration into the caseous granulomas and understanding the biology of dormant bacilli and in particular of persister cells, phenotypically resistant to antibiotics, will be essential to eradicate Mtb from humans. In recent years unprecedented efforts have been done in TB drug discovery, aimed at identifying novel drugs and drug combinations killing both actively replicating and nonreplicating Mtb in vitro, in animal models and in clinical trials in humans.

Downloads

Download data is not yet available.


Abstract 2380
PDF Downloads 850
HTML Downloads 2918