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Abstract. Infections, especially pneumococcal septicemia, meningitis, and Salmonella 
osteomyelitis, are a major cause of morbidity and mortality in patients with sickle cell disease 
(SCD). SCD increased susceptibility to infection, while infection leads to SCD-specific 
pathophysiological changes. The risk of infectious complications is highest in children with a 
palpable spleen before six months of age. Functional splenectomy, the results of repeated splenic 
infarctions, appears to be a severe host-defense defect. Infection is the leading cause of death, 
particularly in less developed countries. Defective host-defense mechanisms enhance the risk of 
pneumococcal complications. Susceptibility to Salmonella infections can be explained at least in 
part by a similar mechanism. In high-income countries, the efficacy of the pneumococcal vaccine 
has been demonstrated in this disease. A decreased in infection incidence has been noted in SCD 
patients treated prophylactically with daily oral penicillin. Studies in low-income countries 
suggest the involvement of a different spectrum of etiological agents. 
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Introduction. Sickle cell disease (SCD) represents an 
increasing global health problem. It corresponds to an 
autosomal recessive disorder in which structurally 
abnormal hemoglobin (HbS) leads to chronic 
hemolytic anemia and a variety of severe clinical 
manifestations. This disorder is caused by a point 
mutation. A single DNA base change leads to 
substitution of valine for glutamic acid at the 6th 
position on beta globin chain. SCD is one of the most 
common monogenic disorder.1 SCD is mainly 
widespread throughout most of the African continent, 
the Middle East and India, and in localized areas in 
Mediterranean countries because of a selective 
advantage conferred by this disorder in protecting 
against Plasmodium falciparum malaria infection in 

heterozygotes.2  
Because population movements, the distribution of 

SCD has spread far beyond non-endemic regions with 
an increase in the prevalence and genetic heterogeneity 
of hemoglobinopathies across the world.3 The increase 
of inherited hemoglobin disorders will represent a 
severe global health burden for the future, both in high-
income and lower-income countries.4 In high-income 
countries, this increase is in part related to significant 
gains in life expectancy with a significant decrease in 
childhood mortality because of better newborn 
screening, antibiotic prophylaxis, and hydroxyurea 
therapy. Clinical outcomes have gradually improved 
over the years, mostly as a result of developments in 
supportive care and treatment with hydroxyurea, for 
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many years the sole approved pharmacologic therapy 
for SCD.5 Hydroxyurea has multiple beneficial effects 
for patients with SCD. Hydroxyurea causes an increase 
in HbF, which interferes with the polymerization of 
HbS and reduces the frequency and severity of the 
painful crisis.6 Hydroxyurea also lowers the leukocyte 
and platelets counts and improves blood rheology. 
Vaso-occlusion typically causes acute complications, 
including ischemic damage of tissues. With growing 
evidence of the safety and efficacy of hydroxyurea, its 
use has increased in high- and lower-income countries, 
but it continues to be underused.7 Alongside 
hydroxyurea, novel therapeutic agents inducing HbF 
are currently under investigations.8 The survival of 
children with SCD approaches that of unaffected 
children.9 However, this does not always apply to 
patients in lower-income countries because disease 
management remains costly, with full access to care 
only for the most privileged.10 Life expectancy among 
African people with SCD is probably less than 20 
years.11 Although over the last decade childhood 
mortality has been reduced, mortality among children 
younger than five years remains as high as 90%.12 

Increased early mortality in Africa among children 
with SCD is primarily due to increased risk of 
infection.13 The lack of basic health care infrastructures 
often limits in most of these countries the development 
of management and prevention of the disease. 
Furthermore, a much more severe course of the disease 
is usually observed in patients living in low-income 
countries compared to genetically similar patients 
living in the northern hemisphere because of 
environmental factors.14 

This short review summarizes published data 
regarding infections in SCD, including interactions 
with environmental factors, and their specificities 
according to patients living in high- or low-income 
countries in order to improve patients’ care and to 
guide future areas for research.  

 
Environmental Determinants SCD and Infections. 
Non-genetic factors have been shown to influence the 
outcome of SCD. Potential relevant environmental 
factors include the climate and air quality, housing and 
socio-economic status, physical activities, each of 
which being able to impact on SCD outcome. However, 
study results are confusing and sometimes conflicting 
because of the complex relationships between 
environmental factors and potential infections. The rate 
of HbS polymerization is dependent on hypoxia, pH, 
temperature, and patient’s hydration, which could be 
altered by environmental factors.15 However, 
inconsistencies among studies, especially according to 
high- or lower-income countries, may reflect 
differences in housing and social factors. Cold weather 
can cause increased infections and peripheral 
vasoconstriction leading to higher deoxygenation.15 

Increased blood viscosity and cold diuresis could 
participate in increased sickle pain in cold winter 
months.16 However, if studies conducted in both high-
income countries and lower-income countries reported 
a relationship between cold weather and acute pain,17-19 

this was not confirmed by others.20,21 Conversely, fresh 
accommodation may be important in tropical countries 
by protecting patients from the effects of extreme 
heat.15 Similarly, higher wind speeds have been 
associated with increased hospital admissions for 
pain.22,23 Both high and low humidity have also been 
associated with increased hospital admissions for 
pain.22 Increased episodes of pain were reported during 
the rainy season under tropical climates,17 but not in 
Western countries with rainy climates.22 Air pollution 
has also been reported as a leading cause of illness in 
SCD. There is also evidence of a relationship between 
tobacco smoke and SCD through infections, 
inflammation, oxidative stress and endothelial 
dysfunction.24,25 Socio-economic factors influence the 
course of SCD. Increased poverty is associated with a 
worth outcome in which infections may play 
significant part.26 Deficiencies in micronutrients could 
affect immune function and contribute to susceptibility 
to infection. Suppressed cell-mediated immunity with 
zinc deficiency and decreased nucleoside 
phosphorylase activity has been described in SCD.27 

Giving supplementation has been shown to increase 
levels of IL-2, a cytokine needed for expansion and 
maintenance of T cells, and reduce the incidence of 
bacterial infections.28 

 
Impaired Splenic Function in SCD and Infections. 
The spleen performs several essential host defense 
functions and plays a key role in the increased 
susceptibility to certain bacterial infections in SCD. As 
a phagocytic filter, it can nonspecifically survey and 
present intravascular antigen to T and B cells that 
reside in or transit through this lymphoid organ. The 
spleen is also an important site of IgM production and 
memory B-cell differentiation during primary humoral 
responses. It is responsible for generating antibody 
responses to polysaccharide antigens. Increased 
susceptibility to infections is observed in individuals 
undergoing splenectomy and in those with 
nonfunctioning spleens. In these situations, slow flow 
is created, enabling splenic macrophages to remove 
defective red blood cells and bacteria and to present 
antigen to lymphocytes.29 A deficient opsonization due 
to a defect in the alternative pathway of complement 
has been demonstrated.30 Impaired antibody formation 
may be the central factor responsible for the observed 
serum opsonizing defects. While macrophages directly 
recognize opsonized bacteria, poorly opsonized 
bacteria are only cleared effectively by the spleen. 
Such pathogens include encapsulated bacteria. The 
hyposplenic state observed in individuals with SCD is 

http://www.mjhid.org/


 
  www.mjhid.org Mediterr J Hematol Infect Dis 2019; 11; e2019042                                                         Pag. 3 / 9 

 

initially reversible, then with repeated episodes of 
sickling and ischemic damage spleen shrinks to a small 
remnant and the individual is rendered asplenic. 

 
Interactions Between SCD and Infections. SCD 
increased susceptibility to infection, while infection 
leads to SCD-specific pathophysiological changes 
(Figure 1). SCD can create an environment supporting 
infections. The vast majority of SCD patients live in 
low-income countries with high prevalence and 
transmission rates of infections. The potential 
mechanisms leading red cell sickling and vaso-
occlusive crisis in SCD patients with infections have 
been recently reviewed focusing on the challenging 
issue of infectious diseases given the background 
immunodeficiency associated with SCD and the high 
prevalence of infections in underdeveloped countries.31 
Areas of necrotic bone act as foci for infection. 
Salmonella is the most common agent of cases of acute 
osteomyelitis in SCD (42% to 57%),32,33 followed by 
Staphylococcus aureus, and then Gram-negative 
enteric bacteria.34 Most of Salmonella infections were 
Salmonella typhimurium.35 Infarctions of bowel 
secondary to microvascular occlusion favor gut 
bacteria to enter the bloodstream. Edwardsiella tarda is 
an enterobacterium that has been reported with 

increased incidence in SCD.36 SCD also carries an 
increased risk of severe respiratory infections involving 
particularly Mycoplasma and Chlamydia.37 Reversely, 
infection is one of the most common factors 
susceptible to induce crisis in SCD. Infection can lead 
to a range of complications in SCD. During infections, 
changes occurring at a cellular level predispose to 
crises. Circulating leukocytes and the levels of 
inflammatory cytokines increase. Adhesion molecule 
expressions increase on both the vascular endothelium 
and leukocytes. Leukocyte adhesion may be the 
initiating event in vaso-occlusive episodes, as 
microvascular occlusion occurs in post-capillary 
venules.38 Cytotoxic proteins are produced and 
generate reactive O2 radicals leading to oxidative 
damage. The sickling process is initially reversible 
when HbS is re-oxygenated, but dehydration increases 
HbS concentration leading to extensive polymerization 
and irreversible membrane damage. In addition, 
infections increase the risk of sickling by non-specific 
effects through fever, anorexia, nausea, vomiting, and 
diarrhea, which all contribute to dehydration. 

 
Infections with Specific Pathogens in SCD. 
Bacteria. Local infections can become systemic. High 
fever is a medical emergency in patients with SCD 

 

 
Figure 1. Relationship between SCD and infections under the potential influence of environmental determinants: SCD increases 
susceptibility to infections, while infections lead to SCD-specific pathophysiological changes. Prophylactic therapy could lead to substantial 
improvement in both low- and high-income countries. 
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since it can be the first sign of bacteremia, and a broad-
spectrum parenteral antibiotic should be given without 
delay after obtaining samples for blood cultures. A 
wide variety of organisms have been reported to cause 
overwhelming sepsis, but the pneumococcus accounts 
for 50-70% of such infections, with the bulk of the 
remainder being accounted for Neisseria meningitidis, 
Haemophilus influenza, and to a lesser extent 
Escherichia coli. The typical presentation is that of 
septic shock, disseminated intravascular coagulopathy, 
and respiratory distress syndrome occurring in the 
absence of a primary site of infection.39 Mortality can 
reach 35% to 50% from septicemia, and 10% in 
meningitis with a risk confined almost exclusively to 
young children. Additional immune deficits, including 
complement system deficit and reduced leukocyte 
function, are present and also predispose to bacterial 
infections.40-42 These infections include Escherichia 
coli urinary tract infections, Mycoplasma pneumonia 
respiratory infections, dental infections, and 
cholecystitis caused by anaerobes. Polymorphisms of 
genes involved in the immune response also contribute 
to increased susceptibility to infection in SCD. 
Particular HLA II subtypes, polyphormisms of the FcR 
receptor, mannose-binding lectin, insulin-like growth 
factor 1 receptor, genes from the TGFβ/ bone 
morphogenetic protein pathway have been involved in 
an increased risk of bacteremia.43 

Pneumococcal infections in patients with 
splenectomy follow a rapidly fatal clinical course. 
Disseminated intravascular coagulopathy may occur in 
these patients, and organisms can be demonstrated in 
peripheral blood smears. The first presentation of the 
disease may be sudden death due to overwhelming 
sepsis. The pneumococcus is the most common cause 
of bacteremia and meningitis in children with SCD. 
The incidence of invasive pneumococcal disease is 
300-500 times higher in SCD than in the general 
population because of the loss of splenic filter function 
due to infarction. Prophylactic oral penicillin reduced 
the risk of invasive pneumococcal disease by 84% in 
children aged less than three years.44 Fatal 
pneumococcal sepsis is now therefore rare in children 
with SCD in developed countries.45 However, vigilance 
is still required because of the recent emergence of 
non-vaccine serotypes of Streptococcus pneumonia.46 

Acute chest syndrome is the second most common 
cause of hospital admission in SCD and is responsible 
for 25% of deaths, particularly in early childhood.47 
Infection is one of the triggers of acute chest syndrome. 
Evidence of infection was found in one-third of cases, 
with a demonstration of isolated pathogens or 
sometimes found in combination.38 Acute chest 
syndrome is common in young children in whom it is 
associated with viral respiratory infections. Acute chest 
syndrome could involve Chlamydia pneumoniae (14%), 
Mycoplasma pneumoniae (9%), and viruses in all 

patients with SCD regardless of age. 
SCD predisposes to osteomyelitis, which results 

from secondary infection of the ischemic or avascular 
bone. It is often challenging to differentiate thrombotic 
marrow crisis from osteomyelitis in patients with SCD 
because they produce similar findings on radiographs, 
scans, and magnetic resonance imaging. Clinical 
features are mainly a single focus of pain, fever, and 
bacteremia.48 However, children with SCD may have 
multiple sites of bone infection simultaneously. Early 
cultures of blood and stool offer the only clue to the 
correct diagnosis. There is no standardized approach to 
antibiotic therapy, and treatment is likely to vary from 
country to country.49 Presumptive antibiotic therapy 
should include agents effective against Salmonella.50 

Indeed, the infecting organisms were mainly gram-
negative rods. Salmonella species accounted for 
approximately 80%. Other microorganisms included 
Staphylococcus aureus and Mycobacterium 
tuberculosis. Empiric therapy should be directed 
against Salmonella and Staphylococcus until an 
organism is identified. 

Studies on the etiological agents responsible for 
bacteremia in patients with SCD in African low-
income countries are few. They, however, reveal a 
different spectrum of organisms than that observed in 
other parts of the world. In Africa, bacteremia was 
found in 14% to 32% in children with SCD. 51-54 This 
was much higher than the incidence observed in high-
income countries.55,56 Reversely, to what is observed in 
Western countries, pneumococcal infection in Africa 
does not contribute significantly to the morbidity and 
mortality of children with SCD because of the 
involvement of other infections, rending preventive 
measures inappropriate.57 Gram-negative bacteremia 
constitute more than 60% of all isolates, while the 
predominant isolates were Klebsiella pneumonia (25%), 
Staphylococcus aureus (25%), and Salmonella 
species.51,52,54,58-62 One given explanation for these 
discrepancies in terms of patterns of bacterial isolates 
was the unregulated use of antibiotics (mainly 
penicillins or penicillin derivatives) before hospital 
admission in some African countries, which could 
affect the results of bacterial cultures.51,63 Increased 
resistance to commonly used antibiotics has been 
reported, but treatment with ciprofloxacin and some 
third-generation cephalosporin is still active.61,64 

Because infections by these agents are not vaccine-
preventable, it has been suggested that disparity in 
terms of vaccinations among low-income and high-
income countries may not account for the higher 
incidence of bacteremia in Africa, but could be 
explained by differences in terms of patient’s immunity 
and environment.51,65 In Africa, patients with SCD 
were shown to be at increased risk of contracting 
tuberculosis. They were shown to have significantly 
lower hematocrit and a higher level of circulating 
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sickle cells those patients without tuberculosis.66 
 

Viruses. In SCD, Parvovirus B19 commonly causes a 
transient aplastic crisis which occurs in 65% to 80% of 
infections. It specifically infects erythroid progenitor 
cells resulting in a temporary cessation of 
erythropoiesis leading to severe anemia.67 Although 
most children recover within two weeks, most of them 
require a blood transfusion. The aplastic crisis is 
uncommon after 15 years old.68 Parvovirus aplastic 
crisis does not recur due to long-lasting humoral 
immunity. However, infections are observed among 
other household members in about 50% of cases 
because of the highly contagious features of the virus.69 

HIV prevalence in SCD patients varies between 0% 
and 11.5% in published studies.70 Few data are 
available regarding the impact of coexistent HIV 
infection and SCD. However, this represents a 
challenge, particularly in Africa, where both conditions 
are highest, and resources are low. Both diseases have 
a common risk for stroke, splenic dysfunction, 
avascular necrosis, and pulmonary arterial 
hypertension. HIV infection increases the risk of sepsis 
and bacterial infection, mainly of pneumococcal 
infection.71 However, both diseases seem to interact 
closely. HIV infection tends to decrease the risk of 
vaso-occlusive crisis while SCD seems to improve the 
frequency of HIV long-term non-progressors.72 
Interactions of antiretroviral therapy with SCD have 
been demonstrated. A better understanding of the 
interactions between these diseases would lead to better 
treatment approaches, especially in regions of co-
prevalence. 

At least 10% of adult sickle cell patients are 
hepatitis C-virus (HCV) positive and often have liver 
dysfunction.73 Although the incidence of transfusion-
acquired infection has decreased; the risk is still 
present. The HCV antibody positivity is directly related 
to the number of transfusions given.74 Iron overload 
following blood transfusions is additive to the liver 
damage caused by HCV infection. The standard of care 
for patients with chronic HCV infection combines 
interferon and ribavirin. Ribavirin (a guanosine 
nucleoside analog used to treat HCV) can also increase 
hemolysis in patients with SCD. In order to decrease 
the severity of ribavirin-related hemolysis, it has been 
suggested to pre-treat HCV patients with hydroxyurea 
to increase HbF.75 Transfusions may not be the primary 
route of HCV transmission in lower-income 
countries.76 Practices, such as circumcision and 
medicinal and other scarifications, may be additional 
risk factors. 

 
Parasites. The tropical environment within which most 
of the SCD patients live has a very high prevalence of 
parasitic diseases. Malaria is a significant pathogen in 
SCD. It contributes to excess mortality among patients 

with SCD in Africa.77,78 Immunological deficiencies 
due to SCD render children with SCD particularly 
vulnerable to malaria. Although homozygous SCD is 
known to confer higher resistance to malaria, the co-
existence of SCD and malaria is associated with 
increased morbidity and mortality. Malaria is the most 
common cause of crisis via a massive release of 
inflammatory cytokines. The parasite is both 
erythrocytotropic and erythrocytopathic. Infected red 
cells sickle as a result of metabolic changes induced by 
the replicating parasites with cells becoming extremely 
adherent to the vascular endothelium promoting stasis 
and vaso-occlusive crisis.79 In Africa, the tropical rainy 
season has been shown to be associated with increased 
frequency of vaso-occlusive crisis in relationship with 
increased stagnant surface waters ideal for 
reproduction and survival of mosquito vectors for the 
malaria parasites.79 Splenectomized individuals with 
Plasmodium falciparum have reduced clearance of 
parasitized red blood cells and can cause 
dyserythropoiesis and chronic hemolysis leading to 
folate-deficiency anemia.80 Long-term prophylaxis has 
been shown to lower the incidence of crisis and to 
reduce mortality.81 

A higher prevalence of protozoan and helminthic 
intestinal parasites in SCD patients has been reported 
as a result of their weak immune response to 
infection.82 A study from Nigeria showed that anemia 
in SCD patients might be exacerbated by intestinal 
parasites, and suggested that these patients should have 
regular stool examinations.83 Infections were 
predominantly due to soil-transmitted helminths and 
protozoans, strongly associated with poverty and poor 
hygiene. In addition, intestinal parasites may cause iron 
deficiency, which could favor cell aggregation. 

Pneumonitis-induced hypoxia and increased 
eosinophil counts due to tropical parasitic diseases may 
increase cell adhesion to vascular endothelium 
predisposing to red cell sickling and vaso-occlusive 
crisis.79 This condition includes Loffler's syndrome in 
ascariasis and ancylostomiasis, schistosomiasis, 
filariasis, and larva migrans in toxocariasis.  

Urinary schistosomiasis is a major cause of chronic 
illness endemic in Africa in both rural and urban 
communities with significant socioeconomic and 
public health burden. A Nigerian study showed that 
urinary schistosomiasis adversely affected the severity 
and prognosis of SCD.84 SCD patients with 
schistosomiasis had lower hematocrit and higher 
reticulocyte count due to hematuria. Higher 
reticulocyte, leucocyte, and thrombocyte counts 
increase viscosity and accounts for the higher 
frequency of vaso-occlusive crisis. Schistosomiasis 
was also associated with a higher prevalence of 
secondary urinary tract infections including Salmonella 
species, Escherichia coli, Klebsiella and 
Staphylococcus species. 
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Prophylactic Therapy. Screening programs have been 
established in high-income countries, and begin to be 
developed in lower-income countries with a very high 
prevalence of SCD. However, even if diagnostic tests 
can be quickly introduced in these lower-income 
countries, preventive interventions not always follow, 
85 including penicillin prophylaxis in children44 and 
pneumococcal vaccine.86 Such interventions, currently 
used in high-income countries, could save millions of 
lives if implemented in lower-income countries.  

Since the end of the 80s, prophylactic oral penicillin 
V has been shown to reduce the risk of invasive 
pneumococcal disease by 84% in children aged less 
than three years, with minimal adverse reactions.44,87 
This simple intervention was rapidly recommended 
with a beginning of administration at 3 months in 
children with homozygous state for βS (HbSS) and 
variants sickle-β0-thalassemia (HbSβ0) and doses of 
62.5 mg twice daily until one year, 125 mg twice daily 
between one and 5 years, and 250 mg twice daily after 
5 years old.88,89 Erythromycin is a suitable alternative 
in case of penicillin allergy. For children with 
heterozygous state sickle-hemoglobin C disease 
(HbSC) and variants sickle-β+-thalassemia (HbSβ+), 
hyposplenism occurring later, practice varies among 
centers. However, penicillin prophylaxis is usually 
considered starting at age 4-5 years or for a history of 
pneumococcal sepsis or surgical splenectomy.90 The 

duration of penicillin prophylaxis remains controversial. 
The absence of significant benefit has been suggested 
to stop prophylaxis after five years,89 long-term 
administration being a potential source of resistance 
development.91 However, guidelines for asplenic 
patients recommend that penicillin prophylaxis be 
continued lifelong.92 

Another major key in the prevention of infection is 
vaccination. Early studies with vaccination against 
pneumococcal bacteria suggested a 50% reduction of 
invasive pneumococcal disease.93 The current vaccines 
should protect against 75% of infections, with another 
14% prevented via cross-protection. For all forms of 
SCD, the standard vaccine series of childhood should 
be considered, including the 13-valent pneumococcal 
conjugate vaccine. The 23-valent pneumococcal 
polysaccharide vaccine should also be given at two 
years (and 5-yearly after that) at least two months after 
the 13-valent vaccine. Other vaccines are lifesaving in 
children with SCD. The 4-valent meningococcal 
conjugate vaccine should be given at two years with re-
immunization considered at 5-year intervals. Annual 
influenza immunization should be offered (Table 1).89 
It is expected that Salmonella vaccines may be useful 
in people with SCD, especially in resource-poor 
settings.94 In addition, meningitidis A and C 
vaccination and malaria prophylaxis should be 
recommended for travel to endemic areas. 

 
Table 1. Immunization recommendations for all forms of SCD. 

Vaccine Age 
Diphteria/tetanus/pertussis/Haemophilus influenza/polio 

13-valent pneumococcal vaccine 2 months 

Diphteria/tetanus/pertussis/Haemophilus influenza/polio 
Meningitis C 3 months 

Diphteria/tetanus/pertussis/Haemophilus influenza/polio 
Meningitis C 

13-valent pneumococcal vaccine 
4 months 

Hepatitis B 
Haemophilus influenza 

Meningitis C 
12 months 

Hepatitis B 
13-valent pneumococcal vaccine 

Meascles/mumps/rubella 
13 months 

Hepatitis B 18 months 
23-valent pneumococcal vaccine 2 years 
23-valent pneumococcal vaccine 7 years 
23-valent pneumococcal vaccine 12 years 
23-valent pneumococcal vaccine 17 years 

Influenza Annually from 6 months 
 

Conclusions. Infection is a major determinant of the 
outcome in patients with SCD. It represents the 
primary cause of premature deaths among children 
with SCD in Africa. A substantial proportion of 
invasive pneumococcal and Haemophilus influenza 
type B disease could be attributable to SCD.13 The 
burden of SCD in Africa warrants a strong emphasis on 

infection prevention, as recently stated by the World 
Health Organization, which pointed to "the urgent need 
to develop models of care appropriate to the 
management of SCD in sub-Saharan Afric".95 While 
encapsulated bacterial agents are recognized as the 
most important microbes associated with severe illness, 
there is evidence that SCD increases the risk for several 
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other infections that warrant additional preventive 
measures. In this setting, better identification of risk 
factors could have, through the development of 
appropriate public health policies, an immediate impact 
in preventing complications in these patient 
populations. Simple measures such as better hygiene 
with hand-washing, avoidance of food contamination, 
nutritional supplementation can reduce infection risk.96 

Although in a lesser extent, infections in high-income 
countries can also contribute to morbidity and mortality 
among patients with SCD, especially in children. 
However, with current multidisciplinary care, almost 
all children with SCD in developed countries now 
survive to adulthood. The burden of mortality has now 
shifted to adults. Early identification of infections and 

their prompt treatment can avoid severe complications. 
However, treatment of the most common bacterial 
infections in SCD is not based on the results of 
randomized controlled trials but based on consensus 
guidelines, clinical experience or adapting treatment 
applied on other diseases, leading to wide variations in 
treatment among institutions.97 Primary interventions, 
including penicillin prophylaxis and vaccinations, have 
led to substantial improvement in higher-income 
countries.98 Recent studies showed a different 
problematic in non-developed countries with a 
different spectrum of organisms involved in severe 
infections, and highlighted the rarity of Streptococcus 
pneumonia, adding to the debate regarding the need for 
pneumococcal vaccines in this setting.51 
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