Background and Objectives: In newborns and infants during their first year of life, there is a dynamic change in the fraction of hemoglobin (Hb). To apply Hb analysis as a phenotypic diagnosis of thalassemia in newborns and infants, we need normal values of each Hb fraction for reference.


Methods: Seventeen cord bloods from normal deliveries were collected for analysis. One hundred and thirty seven infants from the pediatric outpatient clinic were recruited and were categorized by their ages into a series of short periods (month+2 weeks). Both alpha and beta thalassemia carriers detected were excluded. Samples with an Hb level less than 10.0 g/dL were also excluded. The proportion of Hb A (a2b2), A2 (a2d2), and F (a2g2) was obtained from high performance liquid chromatography and analyzed according to its categorized periods.


Results: There were 90 (58.4%) specimens left for evaluation. The percentage of Hb A, A2, and F gradually changed with increasing age. The percentage of Hb A was 21.14+7.04% (mean+SD) in cord blood and increased substantially to 83.38+1.31% at the sixth month. The level was sustained thereafter. The incremental pattern of Hb A2 was similar to Hb A. The value was 0.32+0.19% at the beginning and reached a plateau with 2.78+0.25% at the sixth month. The percentage of Hb F started at 78.39+7.59% in cord blood and decreased rapidly in the first 6 months.


Conclusions: The data possibly can be applied as quick guidance for interpretation of Hb analysis in newborns and infants during their first year of life.



Hemoglobin analysis; High performance liquid chromatography; Thalassemia; Newborn; Infant

Full Text:

Submitted: 2015-07-21 12:38:52
Published: 2016-02-12 00:00:00
Search for citations in Google Scholar
Related articles: Google Scholar


Steinberg MH, Adams JG. Hemoglobin A2: origin, evolution, and aftermath. Blood. 1991;78:2165-77.

Cao A, Saba L, Galanello R, Rosatelli MC. Molecular diagnosis and carrier screening for beta thalassemia. JAMA. 1997;278:1273-77.

Tietz NW, Logan NM. Appendix. In: Tietz NW, ed. Textbook of clinical chemistry. Philadelphia: W.B. Saunders Company, 1986: 1830.

Craver RD, Abermanis JG, Warrier RP, Ode DL, Hempe JM. Hemoglobin A2 levels in healthy persons, sickle cell disease, sickle cell trait, and beta-thalassemia by capillary isoelectric focusing. Am J Clin Pathol. 1997;107:88-91.

Mirasena S, Shimbhu D, Sanguansermsri M, Sanguansermsri T. The spectrum of beta thalassemia mutations in Phitsanulok province: development of multiplex ARMS for mutation detection. Naresuan University Journal. 2007;15:43-53.

Mirasena S, Shimbhu D, Sanguansermsri M, Sanguansermsri T. Detection of beta thalassemia mutations using a multiplex amplification refractory mutation system assay. Hemoglobin. 2008;32:1-7.

Tatu T, Gategasem P, Hathirat P. Hemoglobin typing by high performance liquid chromatography. Southeast Asian J Trop Med Public Health. 1997;28:417-23.

Cotton F, Lin C, Fontaine B, Gulbis B, Janssens J, Vertongen F. Evaluation of a capillary electrophoresis method for routine determination of hemoglobins A2 and F. Clin Chem. 1999;45:237-43.

Higgins TN, Khajuria A, Mack M. Quantification of HbA(2) in patients with and without beta-thalassemia and in the presence of HbS, HbC, HbE, and HbD Punjab hemoglobin variants: comparison of two systems. Am J Clin Pathol. 2009;131:357-62.

Wasi P, Disthasongchan P, Na-Nakorn S. The effects of iron deficiency on the levels of hemoglobins A2 and E. J Lab Clin Med. 1968;71:85-91.

Alperin JB, Dow PA, Petteway MB. Hemoglobin A2 levels in health and various hematologic disorders. Am J Clin Pathol. 1977;67:219-26.

Madan N, Sikka M, Sharma S, Rusia U. Phenotypic expression of hemoglobin A2 in beta-thalassemia trait with iron deficiency. Ann Hematol. 1998;77:93-6.

Verhovsek M, So CC, O'Shea T, Gibney GT, Ma ES, Steinberg MH, Chui DH. Is HbA2 level a reliable diagnostic measurement for β-thalassemia trait in people with iron deficiency? Am J Hematol. 2012;87:114-6.

Passarello C, Giambona A, Cannata M, Vinciguerra M, Renda D, Maggio A. Iron deficiency does not compromise the diagnosis of high HbA(2) β thalassemia trait. Haematologica. 2012;97:472-3.

Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011-23.

Abstract views:


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2016 Mediterranean Journal of Hematology and Infectious Diseases

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
© PAGEPress 2008-2018     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185     •     Privacy