Differences in ex-vivo Chemosensitivity to Anthracyclines in First Line Acute Myeloid Leukemia
Received: October 10, 2018
Accepted: January 12, 2019
Mediterr J Hematol Infect Dis 2019, 11(1): e2019016 DOI 10.4084/MJHID.2019.016
This is an Open Access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Abstract Background:
Induction schedules in acute myeloid leukemia (AML) are based on
combinations of cytarabine and anthracyclines. The choice of the
anthracycline employed has been widely studied in multiple clinical
trials showing similar complete remission rates. |
Introduction
Different ex vivo tests have been employed to select the most effective drug combination from the individualized sensitivity and resistance assays, but none of them have been recommended in clinical practice.[24] We are developing a Precision Medicine (PM) test based on an actionable native environment method (PharmaFlow platform), which showed excellent correlations with clinical responses in AML, avoiding some limitations of other ex vivo assays.[25]
The objective of this non-interventional study is to explore whether a significant percentage of patients AML samples may show different ex-vivo sensitivity to IDA vs DNR vs MIT combined with CYT.
Patients and Methods
Vivia’s PharmaFlow PM Test.
• Native environment whole bone marrow sample
Ex vivo drug sensitivity analysis was made using the PharmaFlow platform (previously termed ExviTech®)[25] maintaining the bone marrow (BM) microenvironment. A minimum BM sample volume between 1 and 2 ml was collected by aspiration at AML diagnosis, before starting induction chemotherapy, and was processed by an automated method in Vivia Biotech laboratories 24 hours after extraction. Samples were incubated for 48 hours in 96 well plates, each well containing different drugs or drug combinations at different concentrations, enabling calculation of dose-response curves for every single drug (CYT, IDA, DNR, MIT) and combination used in treatments (CYT-IDA, CYT-DNR, CYT-MIT). The number of BM samples analyzed were 289 with IDA, 333 with DNR and 274 with MIT. A more detailed description of the procedure has been published elsewhere.[25] The concentrations assayed for each anthracycline were:
- Concentrations for IDA (µM): > 0.0002 ; 0.001 ; 0.002 ; 0.006 ; 0.01 ; 0.018 ; 0.02 ; 0.04 ; 0.05 ; 0.055 ; 0.08 ; 0.13 ; 0.16 ; 0.2 ; 0.26 ; 0.4 ; 0.5 ; 0.6 ; 1.5.
- Concentrations for DNR (µM): > 0.001; 0.05 ; 0.075 ; 0.093 ; 0.15 ; 0.18 ; 0.25 ; 0.3 ; 0.37 ; 0.45 ; 0.75 ; 0.85 ; 1.25 ; 1.5 ; 2.7 ; 3.
- Concentrations for MIT (µM): > 0.001 ; 0.0016 ; 0.008 ; 0.01 ; 0.04 ; 0.08 ; 0.2 ; 0.38 ; 0.6 ; 0.8 ; 1 ; 2.33 ; 3.5 ; 7.
• Modeling of ex vivo activity of CYT, IDA, DNR, MIT
Evaluation of drug response was done by counting the number of live pathological cells (LPC) remaining after incubation at increasing drug concentrations. Dying cells (apoptosis) were excluded using Annexin V-FITC. Pharmacological responses were estimated using pharmacodynamic (PD) population-based models[27] which essentially perform the fitting of the dependent variable (natural log of LPC) in a non-linear mixed-effects model to derive typical population values (fixed effects) and the magnitude of inter-patient and residual variability (random effects). Model development was performed with the first-order conditional estimation method using interaction option with the software NONMEM (v7.2)[28], according to the following equation:
For data presentation, the survival index was computed, with the number of LPC in control wells that were not exposed to any drugs being set as 100%. The number of live cells in each drug-treated well was compared with this control value, and the survival index for each drug at each concentration was determined as the percentage of LPC at every tested concentration.
Interpatient variability (IPV) associated with all parameters was described using an exponential model of the components of variance. An additive error structure was used for the residual variability. Population PD models were built with BM samples from 227 patients that were incubated with IDA, 271 with DNR, and 212 with MIT. Bayesian estimation methods were then used to retrieve individual patient parameters based on their available exposure-response measurements in conjunction with the PD population parameters. After several trials with different modeling strategies, we could conclude that optimal approach, in terms of correlation with clinical output, was achieved by forcing typical parameters to values obtained in a different model using a dataset from samples tested at 72h. Therefore, the typical parameter value for the maximum fractional effect (Emax) was set to 1 for both drugs. For γ, the typical parameter value was calculated but limited to the range 0-3. IPV for both parameters could not be determined with this dataset.
For interaction analysis, a Surface Interaction model[29] was used to estimate the degree of synergy, referred as α parameter, between both drugs (R environment (v3.3.1) for statistical computing).[30] In this analysis, a value equal to 0 is an additive effect, a value > 0 indicates a synergistic effect, and a value < 0 reflects an antagonistic effect.
Study endpoints. The primary end-point was the comparison between the selective sensitivities of the different anthracyclines individually using the AUCs in the dose-response curve. For the comparisons between the combinations of anthracyclines with CYT, we employed the volume under the surface (VUS) of the dose-response curves. Besides, the differences in either drug potency or synergism ex vivo were also calculated according to the observed and predicted response after induction.
Results
Table 1. Baseline characteristics of the 198 analyzed patients. |
Ex vivo PharmaFlow Test characterization of IDA, DNR and MIT models. Dose-response graphs were generated for the single drugs (IDA, DNR, and MIT) using PD models (Figure 1). Most of the observations were contained within the simulation-based 95% confidence intervals of the 5-95th population percentiles proving good predictability of the selected models. Pharmacological population parameters, as well as variability and error values, are shown in Table 2.
The average dose-responses of the three anthracyclines were similar, with a slight decrease in EC50 values with IDA (p-value=1.462E-06; Table 2), reproducing the results of the clinical trials.[4,6-8,12] However, the interpatient variability of either drug is quite large (Table 2, Figure 1), which could explain why some patients could show very differential sensitivities to these three drugs. As an example, Figure 2 illustrates a patient sample that is resistant to IDA and DNR (right shifted dose-response curve) but sensitive to MIT (left shifted dose-response curve).
To identify these cases of selective sensitivity to anthracyclines, we compared the potency, regarding AUC, between IDA vs. DNR, IDA vs. MIT, and DNR vs. MIT (Figure 3, Table 3). Most dots tend to line up, but red dots represent patient samples with a difference in potency between these drugs >30%. Red dots from 3 pairwise comparisons identify 28.3% of patient samples with >30% different potency among IDA-DNR-MIT (Figure 4).
Table 3. Differences in Area Under the Dose-Response Curve between anthracyclines. |
Ex vivo PharmaFlow Test characterization of CYT-IDA, CYT-DNR, and CYT-MIT combinations and their synergism. The pairwise comparison of the combination treatments CYT-IDA, CYT-DNR, and CYT-MIT obtained differential sensitivity to these anthracyclines (red dots of Figure 5). In this case, the red dots represent patient samples with a difference in CYT + anthracyclines synergy differences >30%, and red dots from 3 pairwise comparisons identified an 8.2% of patient samples (Figure 6, Table 4).
Furthermore, the values for the alpha parameters of the interaction models of CYT-IDA, CYT-MIT, CYT-DNR were 0.72, 0.59 and 0.25, indicating synergistic response in the ex vivo combination experiments.
Table 4. Differences in Volume Under the Surface (VUS) between the combinations of cytarabine and different anthracyclines. |
Discussion
The first line induction therapy recommended by ELN[1] and NCCN[2] clinical guidelines includes seven days of a standard dose of CYT plus three days of an anthracycline, especially IDA (12 mg/m2) or DNR (60-90 mg/m2). The combination of CYT-MIT was not considered standard therapy, although it has been widely employed.
The influence of the anthracycline´s selection in the efficacy of induction therapy was analyzed in some RCTs.[3-22] The comparison between CYT-DNR and CYT-IDA has been studied in 13 different trials,[3-15] but only five studies reported differences in CR rates in favor of CYT-IDA.[4,6-8,12] A meta-analysis confirmed the superiority of CYT-IDA against CYT-DNR, obtaining higher overall survival (OS), disease-free survival (DFS), CR, lower relapse rate, although this scheme increased induction death and mucositis.[23] Regarding the employment of CYT-DNR or CYT-MIT, a clinical trial reported similar CR, length of duration of CR, OS, and toxicity.[16] No evidence of differences between CYT-IDA and CYT-MIT in CR, survival rates, and toxicity was observed in 6 RCTs[9,11,17-20] and one meta-analysis.[23] Combinations of CYT-doxorubicin showed worse outcomes than CYT-DNR[21] and CYT-IDA.[22] According to clinical trials, in our study the average dose-responses of IDA, DNR, and MIT were similar, with a slight decrease in EC50 with IDA, indicating a probable higher potency with IDA than DNR and MIT. However, the anthracycline dosage of induction protocols assumed a cumulative doses proportion of 4:1 for DNR: IDA and DNR: MIT,[31] but these proportions are not based in well-designed trials. In our cohort, according to this proportion and EC50 of DNR (0.458), the estimated EC50 of IDA and MIT was 0.115, a proportion 1.6 fold higher than IDA EC50 and three fold lower than MIT EC50 measured with ex vivo test.
Other studies analyzed the role of different anthracyclines in the AML induction with CYT and a third component, but CR and survival rates were similar for DNR, MIT, and aclarubicin.[32,33] Besides the selection of the anthracycline, the dose intensity is crucial in the therapy success. An RCT[34] reported significant improvements in CR, OS and event-free survival (EFS) using DNR doses of 90 mg/m2 compared to doses of 45 mg/m2. The response-oriented individualized induction therapy is another approach tested with IDA+CYT scheme without any advantage over the standard scheme.[35] In addition, some specific AML characteristics could modify the anthracycline response, such as FLT3-ITD mutated patients which showed higher CR and survival with high-dose DNR compared to standard-dose DNR or IDA.[36,37] These findings were reproduced in vitro in FLT3-ITD-mutated cell lines.[37] Unfortunately, we have not enough data to analyze the impact of this mutation in our cohort.
Despite the previous experiences of ex vivo drug testing with limited sensitivity[38-44], the PharmaFlow PM test aims to solve technical limitations including some novelties:[25]
a) the use of whole BM sample, maintaining the native environment, which has been hypothesized that it can influence the emergence of resistance;[45-48]
b) the increase of the accuracy obtained modeling ex vivo activity with PD population models in one single step;[49]
c) the improvements in the measures performed by automated flow cytometry platform (PharmaFlow).
The correlation between in vitro and in vivo therapy sensitivity of PharmaFlow PM test has been recently demonstrated in a cohort of 123 AML patients after induction therapy with CYT-IDA (most of these patients were also included in this study).[50] This study achieved an 81% of overall accuracy in the correlations between test predictions and hematological response, identifying with success responders (CR/CR with incomplete recovery) in 93% of cases and non-responders (partial remission/resistance) in 60% of cases. The present study generates a theoretical role of PM tests in individual anthracycline selection but does not provide enough data and critical analyses to allow to translate their use in the routine clinical practice.
Regarding the synergism between anthracyclines and CYT, we observed a synergistic response with the three combinations, especially with CYT-IDA and CYT-MIT. In a previous study, we also reported a higher synergy with CYT-IDA and CYT-MIT combination and a trend to an additive effect with CYT-DAU.[25] Curiously, a novel approach in AML therapy is the use of the liposomal formulation of CYT and DNR in a molar ratio concentration of 5:1, based on a probable higher synergistic effect.[51,52] Furthermore, the pairwise comparisons between combinations of CYT-IDA, CYT-DNR, and CYT-MIT found in an 8.2% of patients synergy differences >30%, probably associated to the interpatient variability in drug sensibility observed in dose-response graphs.
Some limitations should be addressed in this study. First, this study analyzes the differences between ex vivo sensitivities to three different anthracyclines combined with CYT in BM samples of AML patients at diagnosis, but the correlation between ex vivo responses and clinical response was not analyzed. Second, although the incubation time was relatively short, additional transportation and processing time could lead, in several patients, to a non-affordable delay to start induction chemotherapy while receiving the test report. Third, associations of the different in vitro response of each anthracycline and specific characteristics of AML (age, WBC, cytogenetic risk, FLT3-ITD, and NPM1 status, etc.) were not analyzed. Finally, the findings reported are not yet validated in an independent cohort.
Conclusions
Acknowledgments
References
- Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum
FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL,
Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J,
Tallman MS, Tien HF, Wei AH, Löwenberg B, Bloomfield C. Diagnosis and
management of AML in adults: 2017 ELN recommendations from an
international expert panel. Blood. 2017;129(4):424-7. https://doi.org/10.1182/blood-2016-08-733196 PMid:27895058 PMCid:PMC5291965
- O'Donnell
MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, Bhatt V,
Bixby D, Blum W, Coutre SE, De Lima M, Fathi AT, Fiorella M, Foran JM,
Gore SD, Hall AC, Kropf P, Lancet J, Maness LJ, Marcucci G, Martin MG,
Moore JO, Olin R, Peker D, Pollyea DA, Pratz K, Ravandi F, Shami PJ,
Stone RM, Strickland SA, Wang ES, Wieduwilt M, Gregory K, Ogba N. Acute
Myeloid Leukemia, Version 3.2017, NCCN Clinical Practice Guidelines in
Oncology. J Natl Compr Canc Netw 2017; 15:926-57. https://doi.org/10.6004/jnccn.2017.0116 PMid:28687581
- Petti
MC, Mandelli F. Idarubicin in acute leukemias: experience of the
Italian Cooperative Group GIMEMA. Semin Oncol 1989; 16:10-5.
PMid:2928805
- Berman E, Heller G, Santorsa
J, McKenzie S, Gee T, Kempin S, Gulati S, Andreeff M, Kolitz J,
Gabrilove J, et al. Results of a randomized trial comparing idarubicin
and cytosine arabinoside with daunorubicinand cytosine arabinoside in
adult patients with newly diagnosed acute myelogenous leukemia. Blood
1991; 77:1666-74. PMid:2015395
- Mandelli
F, Petti MC, Ardia A, Di Pietro N, Di Raimondo F, Ganzina F, Falconi E,
Geraci E, Ladogana S, Latagliata R, et al. A randomised clinical trial
comparing idarubicin and cytarabine to daunorubicin and cytarabine in
the treatment of acute non-lymphoid leukaemia. A multicentric study
from the Italian Co-operative Group GIMEMA. Eur J Cancer 1991;
27:750–5. https://doi.org/10.1016/0277-5379(91)90181-C
- Vogler
WR, Velez-Garcia E, Weiner RS, Flaum MA, Bartolucci AA, Omura GA,
Gerber MC, Banks PL. A phase III trial comparing idarubicin and
daunorubicin in combination with cytarabine in acute myelogenous
leukemia: A Southeastern Cancer Study Group study. J Clin Oncol 1992;
10:1103–11. https://doi.org/10.1200/JCO.1992.10.7.1103 PMid:1607916
- Wiernik
PH, Banks PLC, Case Jr DC, Arlin ZA, Periman PO, Todd MB, Ritch PS,
Enck RE, Weitberg AB. Cytarabine plus idarubicin or daunorubicin as
induction and consolidation therapy for previously untreated adult
patients with acute myeloid leukemia. Blood 1992; 79:313-9. PMid:1730080
- Reiffers
J, Huguet F, Stoppa AM, Molina L, Marit G, Attal M, Gastaut JA,
Michallet M, Lepeu G, Broustet A, Pris J, Maraninchi D, Hollard D,
Fabères C, Mercier M, Hurteloup P, Danel P, Tellier Z, Berthaud P. A
prospective randomized trial of idarubicin vs daunorubicin in
combination chemotherapy for acute myelogenous leukemia of the age
group 55 to 75. Leukemia 1996; 10(3):389-95. PMid:8642852
- Rowe
JM, Neuberg D, Friedenberg W, Bennett JM, Paietta E, Makary AZ,
Liesveld JL, Abboud CN, Dewald G, Hayes FA, Tallman MS, Wiernik PH;
Eastern Cooperative Oncology. A phase 3 study of three induction
regimens and of priming with GM-CSF in older adults with acute myeloid
leukemia: A trial by the Eastern Cooperative Oncology Group. Blood
2004; 103:479–85. https://doi.org/10.1182/blood-2003-05-1686 PMid:14512295
- Gardin
C, Turlure P, Fagot T, Thomas X, Terre C, Contentin N, Raffoux E, de
Botton S, Pautas C, Reman O, Bourhis JH, Fenaux P, Castaigne S,
Michallet M, Preudhomme C, de Revel T, Bordessoule D, Dombret H.
Postremission treatment of elderly patients with acute myeloid leukemia
in first complete remission after intensive induction chemotherapy:
Results of the multicenter randomized Acute Leukemia French Association
(ALFA) 9803 trial. Blood 2007; 109:5129–35. https://doi.org/10.1182/blood-2007-02-069666 PMid:17341661
- Mandelli
F, Vignetti M, Suciu S, Stasi R, Petti MC, Meloni G, Muus P, Marmont F,
Marie JP, Labar B, Thomas X, Di Raimondo F, Willemze R, Liso V, Ferrara
F, Baila L, Fazi P, Zittoun R, Amadori S, de Witte T. Daunorubicin
versus mitoxantrone versus idarubicin as induction and consolidation
chemotherapy for adults with acute myeloid leukemia: The EORTC and
GIMEMA groups study AML-10. J Clin Oncol 2009; 27:5397–403. https://doi.org/10.1200/JCO.2008.20.6490 PMid:19826132 PMCid:PMC2773224
- Pautas
C, Merabet F, Thomas X, Raffoux E, Gardin C, Corm S, Bourhis JH, Reman
O, Turlure P, Contentin N, de Revel T, Rousselot P, Preudhomme C,
Bordessoule D, Fenaux P, Terré C, Michallet M, Dombret H, Chevret S,
Castaigne S. Randomized study of intensified anthracycline doses for
induction and recombinant interleukin-2 for maintenance in patients
with acute myeloid leukemia age 50 to 70 years: Results of the ALFA-
9801 study. J Clin Oncol. 2010; 28:808–14. https://doi.org/10.1200/JCO.2009.23.2652 PMid:20048183
- Ohtake
S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, Okumura H,
Miyamura K, Nakaseko C, Miyazaki Y, Fujieda A, Nagai T, Yamane T,
Taniwaki M, Takahashi M, Yagasaki F, Kimura Y, Asou N, Sakamaki H,
Handa H, Honda S, Ohnishi K, Naoe T, Ohno R. Randomized study of
induction therapy comparing standard-dose idarubicin with high-dose
daunorubicin in adult patients with previously untreated acute myeloid
leukemia: The JALSGAML201 study. Blood 2011; 117:2358–65. https://doi.org/10.1182/blood-2010-03-273243 PMid:20693429
- Creutzig
U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N,
Klingebiel T, Kremens B, Lehrnbecher T, von Neuhoff C, Ritter J, Sander
A, Schrauder A, von Stackelberg A, Starý J, Reinhardt D. Randomized
trial comparing liposomal daunorubicin with idarubicin as induction for
pediatric acute myeloid leukemia: results from Study AML-BFM 2004.
Blood 2013; 122:37–43. https://doi.org/10.1182/blood-2013-02-484097 PMid:23704089
- Récher
C, Béné MC, Lioure B, Pigneux A, Vey N, Delaunay J, Luquet I, Hunault
M, Guyotat D, Bouscary D, Fegueux N, Jourdan E, Lissandre S,
Escoffre-Barbe M, Bonmati C, Randriamalala E, Guièze R, Ojeda-Uribe M,
Dreyfus F, Harousseau JL, Cahn JY, Ifrah N, Guardiola P; Groupe
Ouest-Est d' étude des Leucé mies Aiguës et autres. Long-term results
of a randomized phase 3 trial comparing idarubicin and daunorubicin in
younger patients with acute myeloid leukaemia. Leukemia 2014; 28:440–3.
https://doi.org/10.1038/leu.2013.290 PMid:24166215
- Pavlovsky
S, Gonzalez Llaven J, Sobrevilla P, Eppinger-Helft M, Marin A,
López-Hernández M, Fernandez I, Rubio ME, Ibarra S, et al. A randomized
study of mitoxantrone plus cytarabine versus daunomycin plus cytarabine
in the treatment of previously untreated adult patients with acute
nonlymphocytic leukemia. Ann Hematol 1994; 69:11-5. https://doi.org/10.1007/BF01757342 PMid:8061102
- Beksac
M, Arslan O, Koc H, Akan H, Ilhan O, Arat M, Ozcan M, Gürman G, Konuk
N, Uysal A. Randomised unicenter trial for comparison of three regimens
in de novo adult acute nonlymphoblastic leukaemia. Med Oncol 1998;
15:183–90. https://doi.org/10.1007/BF02821937 PMid:9819795
- Archimbaud
E, Jehn U, Thomas X, De Cataldo F, Fillet G, Belhabri A, Peaud PY,
Martin C, Amadori S, Willemze R. Multicenter randomized phase II trial
of idarubicin vs mitoxantrone, combined with VP-16 and cytarabine for
induction/consolidation therapy, followed by a feasibility study of
autologous peripheral blood stem cell transplantation in elderly
patients with acute myeloid leukemia. Leukemia 1999; 13:843–9. https://doi.org/10.1038/sj.leu.2401445 PMid:10360370
- Indrak
K, Hubacek J, Mayer J, Voglová J, Jarosová M, Krahulová M, Malý J,
Faber E, Penka M, Kmonícek M, Jebavý L, Szotkowski T, Knotková R, Hlusí
A, Zapletalová J. Comparison of the effectiveness of idarubicin
(Zavedos) and mitoxantrone (Refador) in induction therapy of acute
myeloid leukemia in elderly patients (55-75) (a prospective multicenter
randomized study conducted 1998-2000. Vnitr Lek 2001; 47:48–56.
PMid:11693063
- De Moerloose B, Suciu S,
Munzer, Piette C, Yakouben K, Margueritte G, Lutz P, Uyttebroeck A,
Rohrlich P, Ferster A, Boutard P, Dresse MF, Rialland X, Norton L,
Sirvent N, Karrasch M, Benoit Y, Bertrand Y. Similar efficacy and
toxicity profile for idarubicin and mitoxantrone in induction and
intensification treatment of children with acute myeloid leukemia (AML)
or myelodysplasia (MDS): Long-term results of the EORTC-CLG randomized
phase III trial 58921. Blood 2011; 118:Abstract 2615.
- Yates
J, Glidewell O, Wiernik P, Cooper MR, Steinberg D, Dosik H, Levy R,
Hoagland C, Henry P, Gottlieb A, Cornell C, Berenberg J, Hutchison JL,
Raich P, Nissen N, Ellison RR, Frelick R, James GW, Falkson G, Silver
RT, Haurani F, Green M, Henderson E, Leone L, Holland JF. Cytosine
arabinoside with daunorubicin or adriamycin for therapy of acute
myelocytic leukemia: a CALGB study. Blood 1982; 60:454-62. PMid:6953986
- Bezwoda
WR, Dansey RD. Idarubicin plus cytarabine versus doxorubicin plus
cytarabine in induction therapy for acute non-lymphoid leukaemia: A
randomized trial. Leuk Lymphoma 1990; 1:221–5. https://doi.org/10.3109/10428199009042483 PMid:27463989
- Li
X, Xu S, Tan Y, Chen J. The effects of idarubicin versus other
anthracyclines for induction therapy of patients with newly diagnosed
leukaemia. Cochrane Database Syst Rev 2015; (6):CD010432. https://doi.org/10.1002/14651858.CD010432.pub2
- Schrag
D, Garewal HS, Burstein HJ, Samson DJ, Von Hoff DD, Somerfield MR; ASCO
Working Group on Chemotherapy Sensitivity and Resistance Assays.
American Society of Clinical Oncology Technology Assessment:
chemotherapy sensitivity and resistance assays. J Clin Oncol 2004;
22:3631-8 https://doi.org/10.1200/JCO.2004.05.065 PMid:15289488
- Bennett
TA, Montesinos P, Moscardo F, Martinez-Cuadron D, Martinez J, Sierra J,
García R, de Oteyza JP, Fernandez P, Serrano J, Fernandez A, Herrera P,
Gonzalez A, Bethancourt C, Rodriguez-Macias G, Alonso A, Vera JA, Navas
B, Lavilla E, Lopez JA, Jimenez S, Simiele A, Vidriales B, Gonzalez BJ,
Burgaleta C, Hernandez Rivas JA, Mascu-ano RC, Bautista G, Perez Simon
JA, Fuente Ade L, Rayón C, Troconiz IF, Janda A, Bosanquet AG,
Hernandez-Campo P, Primo D, Lopez R, Liebana B, Rojas JL, Gorrochategui
J, Sanz MA, Ballesteros J. Pharmacological profiles of acute myeloid
leukemia treatments in patient samples by automated flow cytometry: a
bridge to individualized medicine. Clin Lymphoma Myeloma Leuk 2014;
14:305-318. https://doi.org/10.1016/j.clml.2013.11.006 PMid:24468131
- Vardiman
JW, Harris NL, Brunning RD. The World Health Organization (WHO)
classification of the myeloid neoplasms. Blood 2002; 100:2292-302. https://doi.org/10.1182/blood-2002-04-1199 PMid:12239137
- Upton
RN, Mould DR. Basic concepts in population modeling, simulation, and
model-based drug development: part 3-introduction to pharmacodynamic
modeling methods. CPT Pharmacometrics Syst Pharmacol 2014; 3:e88. https://doi.org/10.1038/psp.2013.71 PMid:24384783 PMCid:PMC3917320
- Beal SL, Sheiner LB, Boeckmann AJ, et al. NONMEM Users Guides. Ellicot City, Maryland, Icon Development Solutions, 1989-2001
- Greco
WR, Bravo G, Parsons JC. The search for synergy: a critical review from
a response surface perspective. Pharmacol Rev 1995; 47:331-385.
PMid:7568331
- Wood SN. Generalized Additive Models. An Introduction with R. Boca Raton, Florida, Chapman & Hall/CRC, 2006 https://doi.org/10.1201/9781420010404
- Cheesman S, Shields A; London Cancer North and East. Maximum Anthracycline Doses Guidance. 2016. Available: http://www.londoncancer.org/media/75901/140214-Maximum-Anthracycline-doses-Guideline-v1.pdfm
- Labar
B, Nemet D, Minigo H, Bogdanić V, Jaksić B, Malesević M, Mrsić M.
Aclarubicin in the treatment of de-novo acute myelocytic leukaemia.
Bone Marrow Transplant 1989; 4 Suppl 3:45-6. PMid:2697400
- Büchner
T, Hiddemann W, Blasius S, Koch P, Maschmeyer G, Tirier C, Sodomann H,
Kuse R, Thiel E, Ludwig WD, et al. Adult AML: the role of chemotherapy
intensity and duration. Two studies of the AML Cooperative Group.
Haematol Blood Transfus. 1990; 33:261-6. https://doi.org/10.1007/978-3-642-74643-7_47
- Lee
JH, Joo YD, Kim H, Bae SH, Kim MK, Zang DY, Lee JL, Lee GW, Lee JH,
Park JH, Kim DY, Lee WS, Ryoo HM, Hyun MS, Kim HJ, Min YJ, Jang YE, Lee
KH; Cooperative Study Group A for Hematology. A randomized trial
comparing standard versus high-dose daunorubicin induction in patients
with acute myeloid leukemia. Blood 2011; 118:3832-41. https://doi.org/10.1182/blood-2011-06-361410 PMid:21828126
- Ohtake
S, Miyawaki S, Kiyoi H, Miyazaki Y, Okumura H, Matsuda S, Nagai T,
Kishimoto Y, Okada M, Takahashi M, Handa H, Takeuchi J, Kageyama S,
Asou N, Yagasaki F, Maeda Y, Ohnishi K, Naoe T, Ohno R. Randomized
trial of response-oriented individualized versus fixed-schedule
induction chemotherapy with idarubicin and cytarabine in adult acute
myeloid leukemia: the JALSG AML95 study. Int J Hematol 2010; 91:276-83.
https://doi.org/10.1007/s12185-009-0480-5 PMid:20054669
- Lee
JH, Kim H, Joo YD, Lee WS, Bae SH, Zang DY, Kwon J, Kim MK, Lee J, Lee
GW, Lee JH, Choi Y, Kim DY, Hur EH, Lim SN, Lee SM, Ryoo HM, Kim HJ,
Hyun MS, Lee KH; Cooperative Study Group A for Hematology. Prospective
Randomized Comparison of Idarubicin and High-Dose Daunorubicin in
Induction Chemotherapy for Newly Diagnosed Acute Myeloid Leukemia. J
Clin Oncol. 2017; 35(24):2754-63. https://doi.org/10.1200/JCO.2017.72.8618 PMid:28632487
- Choi
EJ, Lee JH, Lee JH, Park HS, Ko SH, Hur EH, Moon J, Goo BK, Kim Y, Seol
M, Lee YS, Kang YA, Jeon M, Woo JM, Lee KH. Comparison of
anthracyclines used for induction chemotherapy in patients with
FLT3-ITD-mutated acute myeloid leukemia. Leuk Res. 2018; 68:51-6. https://doi.org/10.1016/j.leukres.2018.03.006 PMid:29544132
- Staib
P, Staltmeier E, Neurohr K, Cornely O, Reiser M, Schinköthe T.
Prediction of individual response to chemotherapy in patients with
acute myeloid leukaemia using the chemosensitivity index Ci. Br J
Haematol 2005; 128:783-91. https://doi.org/10.1111/j.1365-2141.2005.05402.x PMid:15755281
- Pemovska
T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, Almusa H,
Bespalov MM, Ellonen P, Elonen E, Gjertsen BT, Karjalainen R, Kulesskiy
E, Lagström S, Lehto A, Lepistö M, Lundán T, Majumder MM, Marti JM,
Mattila P, Murumägi A, Mustjoki S, Palva A, Parsons A, Pirttinen T,
Rämet ME, Suvela M, Turunen L, Västrik I, Wolf M, Knowles J,
Aittokallio T, Heckman CA, Porkka K, Kallioniemi O, Wennerberg K.
Individualized systems medicine strategy to tailor treatments for
patients with chemorefractory acute myeloid leukemia. Cancer Discov
2013; 3:1416-29. https://doi.org/10.1158/2159-8290.CD-13-0350 PMid:24056683
- Jun
KR, Jang S, Chi HS, Lee KH, Lee JH, Choi SJ, Seo JJ, Moon HN, Im HJ,
Park CJ. Relationship between in vitro chemosensitivity assessed with
MTT assay and clinical outcomes in 103 patients with acute leukemia.
Korean J Lab Med 2007; 27:89-95. https://doi.org/10.3343/kjlm.2007.27.2.89 PMid:18094557
- Pierceall
WE, Kornblau SM, Carlson NE, Huang X, Blake N, Lena R, Elashoff M,
Konopleva M, Cardone MH, Andreeff M. BH3 profiling discriminates
response to cytarabine-based treatment of acute myelogenous leukemia.
Mol Cancer Ther 2013; 12:2940-9. https://doi.org/10.1158/1535-7163.MCT-13-0692 PMid:24092807 PMCid:PMC3881173
- Yamada
S, Hongo T, Okada S, Watanabe C, Fujii Y, Ohzeki T. Clinical relevance
of in vitro chemoresistance in childhood acute myeloid leukemia.
Leukemia 2001; 15:1892-7. https://doi.org/10.1038/sj.leu.2402305 PMid:11753610
- Bosanquet
AG, Nygren P, Weisenthal LM, et al. Individualized tumor response
testing in leukemia and lymphoma., in Kaspers GJ, Coiffier B, Heinrich
MC, et al. editors: Innovative leukemia and lymphoma therapy. New York
(NY) Informa Healthcare, 2008:23-44.
- Norgaard
JM, Langkjer ST, Palshof T, Pedersen B, Hokland P. Pretreatment
leukaemia cell drug resistance is correlated to clinical outcome in
acute myeloid leukaemia. Eur J Haematol 2001; 66:160-7. https://doi.org/10.1034/j.1600-0609.2001.00361.x PMid:11350484
- Sison
EA, Brown P. The bone marrow microenvironment and leukemia: biology and
therapeutic targeting. Expert Rev Hematol 2011; 4:271-83. https://doi.org/10.1586/ehm.11.30 PMid:21668393 PMCid:PMC3131221
- Tabe Y, Konopleva M. Role of Microenvironment in Resistance to Therapy in AML. Curr Hematol Malig Rep 2015; 10:96-103. https://doi.org/10.1007/s11899-015-0253-6 PMid:25921386 PMCid:PMC4447522
- Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013; 4:28. https://doi.org/10.3389/fphar.2013.00028 PMid:23504227 PMCid:PMC3596793
- Li ZW, Dalton WS. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 2006; 20:333-42. https://doi.org/10.1016/j.blre.2005.08.003 PMid:16920238
- Quartino
A, Karlsson MO, Freijs A, Jonsson N, Nygren P, Kristensen J, Lindhagen
E, Larsson R. Modeling of in vitro drug activity and prediction of
clinical outcome in acute myeloid leukemia. J Clin Pharmacol 2007;
47:1014-21. https://doi.org/10.1177/0091270007302563 PMid:17660484
- Martínez-Cuadrón
D, Gil C, Serrano J, Rodríguez G, Pérez-Oteyza J, García-Boyero R,
Jiménez-Bravo S, Vives S, Vidriales MB, Lavilla E, Pérez-Simón JA,
Tormo M, Colorado M, Bergua J, López JA, Herrera P, Hernández-Campo P,
Gorrochategui J, Primo D, Rojas JL, Villoria J, Moscardó F, Troconiz I,
Linares Gómez M, Martínez-López J, Ballesteros J, Sanz M, Montesinos P;
Spanish PETHEMA group. A precision medicine test predicts clinical
response after idarubicin and cytarabine induction therapy in AML
patients. Leuk Res. 2018;76:1-10. https://doi.org/10.1016/j.leukres.2018.11.006 PMid:30468991
- Kim
HP, Gerhard B, Harasym TO, Mayer LD, Hogge DE. Liposomal encapsulation
of a synergistic molar ratio of cytarabine and daunorubicin enhances
selective toxicity for acute myeloid leukemia progenitors as compared
to analogous normal hematopoietic cells. Exp Hematol 2011; 39:741-50. https://doi.org/10.1016/j.exphem.2011.04.001 PMid:21530609
- Lancet
JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, Komrokji
R, Solomon SR, Kolitz JE, Cooper M, Yeager AM, Louie AC, Feldman EJ.
Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of
cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults
with untreated AML. Blood 2014; 123:3239-46. https://doi.org/10.1182/blood-2013-12-540971 PMid:24687088 PMCid:PMC4624448
- Megías-Vericat
JE, Martínez-Cuadrón D, Sanz MA, Montesinos P. Salvage regimens using
conventional chemotherapy agents for relapsed/refractory adult AML
patients: a systematic literature review. Ann Hematol 2018; 97:1115-53.
https://doi.org/10.1007/s00277-018-3304-y PMid:29680875
[TOP]