GLUCOSE METABOLISM AND INSULIN RESPONSE TO ORAL GLUCOSE TOLERANCE TEST (OGTT) IN PREPUBERTAL PATIENTS WITH TRANSFUSION DEPENDENT Β-THALASSEMIA (TDT): A LONG-TERM RETROSPECTIVE ANALYSIS Long-term retrospective analysis of glucose homeostasis in children with transfusion dependent β-thalassemia

Main Article Content

Vincenzo De Sanctis
Ashraf Soliman
Ploutarchos Tzoulis
Shahina Daar
Salvatore Di Maio
Bernadette Fiscina
Christos Kattamis

Keywords

Thalassemia, iron overload, oral glucose tolerance test, type 2 diabetes mellitus, insulin secretion and sensitivity indices, long-term follow-up.

Abstract

 


Background: Glucose dysregulation (GD), including prediabetes and diabetes mellitus (DM), is a common complication of transfusion dependent β-thalassemia (TDT) patients. The prevalence increases with age and magnitude of iron overload, affecting a significant proportion of patients. The development of GD is frequently asymptomatic and therefore an early diagnosis, according to the international guidelines, requires an annual oral glucose tolerance test (OGTT) in all TDT patients aged ten years or older.


 


Purpose: This retrospective study aims to evaluate the prevalence of GD in a homogenous population of prepubertal TDT patients and to enhance understanding of the pathogenesis and progression of glucose homeostasis in this group of patients.


 


Methods: A selected group of 28 TDT patients was followed for at least 10.3 years (range: 10.3 - 28.10 years) from prepubertal age (mean 11.0 ± standard deviation 1.1 years) to adulthood (28.7 ± 3.7 years). Glucose tolerance and insulin response to OGTT were assessed, and indices of β-cell function, insulin sensitivity and insulin secretion were calculated.


 


Results: At baseline, 18 TDT patients had normal glucose tolerance (NGT) and 10 isolated impaired fasting glycaemia (IFG), according to the American Diabetes Association (ADA) criteria. Compared to 18 prepubertal healthy controls (mean ± SD age: 10.9 ± 1.1 years), the fasting plasma glucose (FPG), basal insulin level and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index were significantly higher in the group of TDT patients (p= 0.001, 0.01 and 0.012, respectively). At the last observation, 7/18 patients (38.8%) with NGT and 9/10 (90%) with IFG at baseline deteriorated; 3 female patients developed type 2 DM (1 from the NGT group and 2 from the IFG group). Compared to adult controls, TDT patients with NGT had a reduced oral disposition index (DI) (p= 0.006), but no significant difference in HOMA-IR and Matsuda index. Conversely, all insulin indices (HOMA-IR, MI and DI) but one [insulinogenic index (IGI)] were statistically different in TDT patients with GD compared to controls.


 


Conclusion: This study shows a spectrum of disturbances in glucose homeostasis among TDT patients and that prepubertal patients with IFG are at higher risk for developing a deterioration of glucose metabolism.


 

Downloads

Download data is not yet available.


Abstract 1021
PDF Downloads 335
HTML Downloads 91

References

1. Weatherall DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci. 2010;1202:17-23. PMID: 20712767 DOI: 10.1111/j.1749-6632.2010.05546.x.

2. Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018;32:193-211. PMID: 29458726 doi: 10.1016/ j.hoc.2017. 11. 006.

3. De Sanctis V, Soliman AT, Elsedfy H, Pepe A, Kattamis C, El Kholy M, Yassin M. Diabetes and Glucose Metabolism in Thalassemia Major: An Update. Expert Rev Hematol. 2016;9:401-408. PMID: 26697756 DOI: 10.1586/17474086.2016.1136209.

4. Soliman AT, el Banna N, alSalmi I, Asfour M. Insulin and glucagon responses to provocation with glucose and arginine in prepubertal children with thalassemia major before and after long-term blood transfusion. J Trop Pediatr. 1996;42:291-296 [PMID: 8936961 DOI: 10.1093/tropej/ 42.5.291]

5. Berdoukas V, Nord A, Carson S, Puliyel M, Hofstra T, Wood J, Coates TD. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol. 2013;88:E283-285. PMID: 23861216 DOI: 10.1002/ajh.23543.

6.Taher AT, Saliba AN. Iron overload in thalassemia: different organs at different rates. Hematology Am Soc Hematol Educ Program.2017;2017:265-271. PMID: 29222265.

7. Moukalled NM, Bou-Fakhredin R, Taher AT. Deferasirox: Over a Decade of Experience in Thalassemia. Mediterr J Hematol Infect Dis. 2018;10:e2018066. PMID: 30416698 DOI: 10.4084/ MJHID.2018.066.

8. De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Kattamis C, Soliman NA, Elalaily R. Clinical and Biochemical Data of Adult Thalassemia Major patients (TM) with Multiple Endocrine Complications (MEC) versus TM Patients with Normal Endocrine Functions: A long-term Retrospective Study (40 years) in a Tertiary Care Center in Italy. Mediterr J Hematol Infect Dis. 2016;8:e2016022. PMID: 27158435 DOI:10. 4084 /MJHID. 2016.022.

9. He LN, Chen W, Yang Y, Xie YJ, Xiong ZY, Chen DY, Lu D, Liu NQ, Yang YH, Sun XF. Elevated Prevalence of Abnormal Glucose Metabolism and Other Endocrine Disorders in Patients with β-Thalassemia Major: A Meta-Analysis. Biomed Res Int. 2019;2019:6573497.PMID: 31119181; DOI: 10. 1155 / 2019/ 6573497.

10. Liang Y, Bajoria R, Jiang Y, Su H, Pan H, Xia N, Chatterjee R, Lai Y. Prevalence of diabetes mellitus in Chinese children with thalassaemia major. Trop Med Int Health. 2017;22:716-724. PMID: 28544032 DOI: 10.1111/tmi.12876.

11. Ang AL, Tzoulis P, Prescott E, Davis BA, Barnard M, Shah FT. History of myocardial iron loading is a strong risk factor for diabetes mellitus and hypogonadism in adults with β thalassemia major. Eur J Haematol. 2014;92:229-236. PMID: 24164584 DOI:10.1111/ejh.12224.

12. Kattamis C, Ladis V, Tsoussis D, Kaloumenou I, Theodoridis C. Evolution of glucose intolerance and diabetes in transfused patients with thalassemia. Pediatr Endocrinol Rev. 2004;2 Suppl 2:267-271.PMID: 16462709.

13. Messina MF, Lombardo F, Meo A, Miceli M, Wasniewska M, Valenzise M, Ruggeri C, Arrigo T, De Luca F. Three-year prospective evaluation of glucose tolerance, beta-cell function and peripheral insulin sensitivity in non-diabetic patients with thalassemia major. J Endocrinol Invest. 2002;25:497-501.PMID: 12109619 DOI: 10.1007/BF03345490.

14. De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Kattamis C, Soliman NA, Elalaily R. Clinical and Biochemical Data of Adult Thalassemia Major patients (TM) with Multiple Endocrine Complications (MEC) versus TM Patients with Normal Endocrine Functions: A long-term Retrospective Study (40 years) in a Tertiary Care Center in Italy. Mediterr J Hematol Infect Dis. 2016;8:e2016022. PMID: 27158435 DOI: 10.4084/MJHID.2016.022.

15. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Cicognani A. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest. 2006;29:581-593. PMID: 16957405 DOI: 10.1007/BF03344156.

16. Fulwood R, Johnson CL, Bryner JD. Hematological and nutritional biochemistry reference data for persons 6 months–74 years of age: United States, 1976–80. Vital Health Stat. 1982; 11:1-173. PMID: 7170776.

17. Cappellini MD, Cohen A, Eleftheriou A, Piga A, Porter J, Taher A. Guidelines for the Clinical Management of Thalassaemia [Internet]. 2nd Revised ed. Nicosia (CY): Thalassaemia International Federation; 2008. PMID: 24308075.

18. Positano V, Pepe A, Santarelli MF, Scattini B, De Marchi D, Ramazzotti A, Forni G, Borgna-Pignatti C, Lai ME, Midiri M, Maggio A, Lombardi M, Landini L. Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed. 2007;20:578–590. PMID: 17205488 DOI: 10.1002/nbm.1121.

19. Maggio A, Capra M, Pepe A, Mancuso L, Cracolici E, Vitabile S, Rigano P, Cassarà F, Midiri M. A critical review of non-invasive procedures for the evaluation of body iron burden in thalassemia major patients. Ped Endocrinol Rev. 2008;6 (Suppl 1):193–203. PIMD:19337178.

20. Casale M, Meloni A, Filosa A, Cuccia L, Caruso V, Palazzi G, Gamberini MR, Pitrolo L, Putti MC, D'Ascola DG, Casini T, Quarta A, Maggio A, Neri MG, Positano V, Salvatori C, Toia P, Valeri G, Midiri M, Pepe A. Multiparametric Cardiac Magnetic Resonance Survey in Children With Thalassemia Major: A Multicenter Study. Circ Cardiovasc Imaging. 2015;8(8):e003230. PMID: 26253625 DOI: 10.1161/ CIRCIMAGING.115.003230.

21. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2020. Diabetes Care. 2020; 43 (Suppl.1): S14-S31. PMID: 31862745 DOI: 10.2337/dc20-S002.

22. Seltzer HS, Allen EW, Herron AL, Jr., Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest.1967; 46: 323-335. PMID: 6023769 DOI: 10.1172/JCI105534.

23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419. PMID: 3899825 DOI: 10.1007/BF00280883.

24. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470. PMID: 10480510 DOI: 10.2337/diacare.22.9.1462.

25. Utzschneider K, Prigeon R, Faulenbach M V, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32:335-341. DOI:10.2337/dc08-1478. Erratum in: Diabetes Care. 2009;32:1355. PMID: 18957530.

26. Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008;16:1901–1907. PMID:18551118 DOI: 10.1038/oby.2008.307.

27. Alder R, Roesser EB. Introduction to probability and statistics.WH Freeman and Company Eds. Sixth Edition. San Francisco (USA), 1975.PMID:1674139.

28. De Sanctis V, Soliman AT, Daar S, Di Maio S, Elsedfy H, Kattamis C. For Debate: Assessment of HbA1c in Transfusion Dependent Thalassemia Patients. Pediatr Endocrinol Rev. 2020;17:226-234. PMID: 32741153 DOI:10.17458/per.vol17.2020.fd.ssd.HbA1cthalassemia.

29. Choudhary A, Giardina P, Antal Z, Vogiatzi M.Unreliable oral glucose tolerance test and HbA1C in Beta Thalassaemia Major-A case for continuous glucose monitoring? Br J Haematol. 2013;162: 132–135.PMID: 23594287 DOI: 10.1111/bjh.12322.

30. De Sanctis V, Soliman AT, Elsedfy H, Skordis N, Kattamis C, Angastiniotis M, Karimi M, Yassin MA, El Awwa A, Stoeva I, Raiola G, Galati MC, Bedair EM, Fiscina B, El Kholy M. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17:8-18. PMID: 23776848 DOI: 10.4103/2230-8210.107808.

31. De Sanctis V, Roos M, Gasser T, Fortini M, Raiola G, Galati MC; Italian Working Group on Endocrine Complications in Non-Endocrine Diseases. Impact of long-term iron chelation therapy on growth and endocrine functions in thalassaemia. J Pediatr Endocrinol Metab. 2006;19:471-480.

32. Au WY, Li CF, Fang JP, Chen GF, Sun X, Li CG, Zhang XH, Wu XD, Gao HY, Hao WG, Rasalkar D, Deng M, Mok SP, Tricta F, Chu WC. Assessment of iron overload in very young children with limited thalassemia care resources in South China. Hemoglobin. 2014;38:119-126.PMID: 24502375 DOI: 10.3109/ 03630269.2014.880715.

33. Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. Effect of enhanced iron chelation therapy on glucose metabolism in patients with beta-thalassaemia major. Br J Haematol. 2006;134:438-444. PMID:16822284 DOI: 10.1111/j.1365-2141.2006.06203.

34. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B; American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30:753-759. PMID: 17327355 DOI: 10.2337/dc07-9920.

35.Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29:1130-1139. PMID: 16644654 DOI: 10.2337/diacare.2951130.

36. Laakso M, Zilinskaite J, Hansen T, Boesgaard TW, Vänttinen M, Stancáková A, Jansson PA, Pellmé F, Holst JJ, Kuulasmaa T, Hribal ML, Sesti G, Stefan N, Fritsche A, Häring H, Pedersen O, Smith U; EUGENE2 Consortium. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia. 2008; 51:502-511. PMID: 18080106 DOI: 10.1007/s00125-007-0899-2.

37 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539-553. PMID: 9686693 DOI: 10.1002/(SICI)1096-9136(199807) 15:7<539::AID-DIA668>3.0.CO;2-S.

38. De Sanctis V, Soliman A,Tzoulis P, Daar S, Kattamis A, Delaporta P, Yassin MA, Karimi M, Canatan D, Al Jaouni S, Galati MC, Raiola G, Messina G, Campisi S, Saki F, Kottahachchi D, Kaleva V, Petrova K, Banchev A, Kilinc Y, Christos Kattamis C. Early detection of glucose dysregulation (GD) in patients with β-thalassemia major: Review of current diagnostic criteria and the ICET-A survey. Curr Trends Endocrinol. 2021;11:1-11.

39. Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30:1926–1933.PMID: 17429063 DOI: 10.2337/dc06-2625.

40. d'Annunzio G, Vanelli M, Pistorio A, Minuto N, Bergamino L, Iafusco D, Lorini R; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Insulin resistance and secretion indexes in healthy Italian children and adolescents: a multicentre study. Acta Biomed. 2009;80:21-28.PMID: 19705616.

41. Imazeki F, Yokosuka O, Fukai K, Kanda T, Kojima H, Saisho H. Prevalence of diabetes mellitus and insulin resistance in patients with chronic hepatitis C: comparison with hepatitis B virus-infected and hepatitis C virus-cleared patients. Liver Int. 2008;28:355-362. PMID: 18290778 DOI: 10.1111/j.1478-3231.2007.01630.x.

42. Moucari R, Asselah T, Cazals-Hatem D, Voitot H, Boyer N, Ripault MP, Sobesky R, Martinot-Peignoux M, Maylin S, Nicolas-Chanoine MH, Paradis V, Vidaud M, Valla D, Bedossa P, Marcellin P. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology. 2008; 134: 416-423. PMID: 18164296 DOI: 10.1053/j.gastro.2007.11.010.

43. Huang JF, Huang CF, Yeh ML, Dai CY, Hsieh MH, Yang JF, Huang CI, Lin YH, Liang PC, Lin ZY, Chen SC, Yu ML, Chuang WL. The outcomes of glucose abnormalities in chronic hepatitis C patients receiving interferon-free direct antiviral agents. Kaohsiung J Med Sci. 2017;33:567-571. PMID: 29050674 DOI: 10.1016/j.kjms.2017.07.003.

44. Labropoulou-Karatza C, Goritsas C, Fragopanagou H, Repandi M, Matsouka P, Alexandrides T. High prevalence of diabetes mellitus among adult beta-thalassaemic patients with chronic hepatitis C. Eur J Gastroenterol Hepatol. 1999;11:1033-1036. PMID: 10503842 DOI: 10.1097/00042737-199909000-00014.

45. Ahren B, Pacini G. Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies. Eur J Endocrinol. 2004;150: 97-104. PMID:14763905 DOI: 10.1530/eje.0.1500097.

46. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP. Quantification of the relationship between insulin sensitivity and B-cell function in human subjects: evidence for a hyperbolic function. Diabetes. 1993;42:1663–1672. PMID: 8405710 DOI: 10.2337/diab.42.11.1663.

47. Soliman AT, el Banna N, alSalmi I, Asfour M. Insulin and glucagon responses to provocation with glucose and arginine in prepubertal children with thalassemia major before and after long-term blood transfusion. J Trop Pediatr. 1996;42:291-296. PMID: 8936961. DOI: 10.1093/tropej/42.5.291.

48. De Sanctis V, Soliman A, Tzoulis P, Daar S, Pozzobon GC, Kattamis C. A study of isolated hyperglycemia (blood glucose ≥155 mg/dL) at 1-hour of oral glucose tolerance test (OGTT) in patients with β-transfusion dependent thalassemia (β-TDT) followed for 12 years . Acta Biomedica. 2020, accepted for publication.

49. Karadas N, Yurekli B, Bayraktaroglu S, Aydinok Y. Insulin secretion-sensitivity index-2 could be a novel marker in the identification of the role of pancreatic iron deposition on beta-cell function in thalassemia major. Endocr J. 2019;66:1093-1099. PMID: 31527320. doi: 10.1507/endocrj.EJ19-0191.

50. Soliman AT, Yassin M, El-Awwa A, De Sanctis V. Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study. Indian J Endocrinol Metab. 2013;17:490-495. PMID: 23869308 DOI: 10.4103/2230-8210.111647.

Similar Articles

You may also start an advanced similarity search for this article.